泵浦合束器的内部结构一般为全光纤结构,光纤之间一般采用直接溶接的方式结合,端面直接溶融耦合与侧面溶接亲合所形成的这类结构就可称作泵浦合束器。泵浦合束器的集成度较高,稳定性较好可承受功率和亲合效率也比较高。随着光纤激光器的全光纤化发展,泵浦合束器已作为泵浦耦合的最主要手段应用于各类光纤激光器中。
根据使用功能分类,光纤合束器可以分为两大类:功率合束器和泵浦合束器。功率合束器就是将多路单模激光合束到一根光纤中输出,用来提高激光的输出功率(也称单模-多模光纤合束器)。泵浦合束器主要是将多路泵浦光合束到一根光纤中输出,主要用来提高泵浦功率(也称多模-多模光纤合束器)。光纤合束器按照其构成方式又可以分成两类,不包含信号光纤的 N1 光纤合束器和包含信号光纤的(N+1)光纤合束器。
N1 光纤合束器的 N 根输入光纤是相同的,这种器件主要用在光纤激光器系统中。N1 光纤合束器既可以用作泵浦合束,也可以用作功率合束。如果 N1 光纤合束器的 N 路输入光纤与多个泵浦源相连,用来提高多模泵浦光输入功率,则是泵浦合束器;如果 N 路输入光纤与激光器连接,用来提高激光合成功率,则是功率合束器。和 N1 光纤合束器不同,(N+1)1 光纤合束器中心的一根光纤是信号光纤。在制作过程中,N 根多模光纤必须紧密对称地排列信号光纤周围,中间的信号光纤用于信号光的输入,这种光纤合束器主要用于光纤放大器。
光纤合束器在光纤激光系统中的应用
通过改变光纤合束器的输入光纤类型,就可以实现不同功能的合束器。光纤合束器在拉锥前输入光纤端面排布示意图,图中的普通光纤可以是多模光纤,也可以是单模光纤,还可以是大模场光纤等。
随着高亮度泵浦半导体、掺杂双包层有源光纤等技术的发展,光纤激光器的输出功率得到飞速提升。国际上已经实现了单模10kW量级的全光纤激光输出。国内在高功率光纤激光器领域起步较晚,目前取得了较大的进步,多家单位和科研院所的输出功率已可突破千瓦。但是,国内高功率光纤激光系统中,大都使用了国外的器件。在全光纤结构光纤激光器/放大器中,大模场掺杂光纤、高亮度泵浦源、泵浦合束器是实现高功率的光纤激光器的关键器件,由于西方国家对中国的技术产品禁运,严重限制了中国高功率光纤激光的发展。因此,研制基于国产器件的高功率光纤激光器对中国光纤激光技术的发展具有重要的战略意义。
在全光纤结构光纤激光器/放大器中,除了掺杂光纤、高亮度泵浦源外,泵浦合束的功率特性直接影响激光器/放大器最终输出功率。,国外商品化的光纤合束器单臂功率已经突破200W,国内尚无单臂大于50W合束器的报道。因此,研究高功率条件下,国产光纤泵浦合束器的热效应,分析器件温度分布规律,设计相应的热管理方案,有助于提升合束器可承受的泵浦功率,最终实现基于国产器件高功率光纤激光器。
泵浦合束器的内部结构一般为全光纤结构,光纤之间一般采用直接溶接的方式结合,端面直接溶融耦合与侧面溶接亲合所形成的这类结构就可称作泵浦合束器。泵浦合束器的集成度较高,稳定性较好可承受功率和亲合效率也比较高。随着光纤激光器的全光纤化发展,泵浦合束器已作为泵浦耦合的最主要手段应用于各类光纤激光器中。